

TITLE: Plano de Ação de Emergência UHE Salto Apiacás - RN1064-23 ANEEL

CODE GRE.OEM.R.88.BR.H.68501.09.014.02

PAGE 1 of 23

File: GRE.OEM.R.88.BR.H.68501.09.006.02.docx O2	Plano de Ação de Emergência UHE SALTO APIACÁS - RN1064-23 ANEEL																					
OLIANA MARTINS PEREIRA JULIANA MARTINS PEREIRA JULIANA MARTINS PEREIRA DULIANA MARTINS PEREIRA CONTRIBUTION VERIFIED FORGETTO / IMPIANTO PROJECT / PLANT PCH PRIMAVERA OLIANA MARTINS PEREIRA CONTRIBUTION VERIFIED FORGETTO / IMPIANTO PROJECT / PLANT PCH PRIMAVERA GROUP FUNCION TYPE ISSUER COUNTRY TEC. PLANT GROUP FUNCION TYPE ISSUER COUNTRY TEC. PLANT GRE OEM R 8 8 B R H 6 8 5 0 1 0 9 0 0 6 0 2 CLASSIFICATION CLASSIFICATION DUTILIZATION SCOPE Basic Design, Detailed Design, Issue for Construction, etc.										Fi	le: G	RE.C	DEM	1.R.	88.E	BR.H	.685	01.0	9.00	6.02	2.do	CX
Ol 15.12.21 O &M Country BRUNA GOMIDES GOUVEIA PEREIRA REV. DATE DESCRIPTION PREPARED CONTRIBUTION VERIFIED VALIDATED EGP CODE PROGETTO / IMPIANTO PROJECT / PLANT PCH PRIMAVERA GRE OEM R 8 8 B R H 6 8 5 0 1 0 9 0 0 6 0 2 PUBLIC S CONFIDENTIAL SASIFICATION CLASSIFICATION GOUVEIA PEREIRA JULIANA MARTINS PEREIRA JULIANA MARTINS PEREIRA JULIANA MARTINS PEREIRA FULLIANA MARTINS PEREIRA JULIANA MARTINS PEREIRA FULLIANA MARTINS PEREIRA JULIANA MARTINS PEREIRA FULLIANA MARTI	02	22.12.23	0&	&M Cou	ıntry	,			3				JULIANA MARTINS PEREIRA									
GOUVEIA REV. DATE DESCRIPTION PREPARED CONTRIBUTION VERIFIED VALIDATED FUNCION TYPE ISSUER COUNTRY TEC. PLANT SYSTEM PROGRESSIVE REVISION PROGRESSIVE REVISION CLASSIFICATION PUBLIC CONFIDENTIAL CLASSIFICATION Basic Design, Detailed Design, Issue for Construction, etc.	01	15.12.22	08	&M Cou	ntry				3				JULIANA MARTINS PEREIRA			RA						
PROGETTO / IMPIANTO PROJECT / PLANT PCH PRIMAVERA GRE OEM R 8 8 B R H 6 8 5 0 1 0 9 0 0 6 0 2 PUBLIC CLASSIFICATION CLASSIFICATION EGP CODE FUNCION TYPE ISSUER COUNTRY TEC. PLANT SYSTEM PROGRESSIVE REVISION PROGRESSIVE REVISION TO SUBJECT PLANT SYSTEM PROGRESSIVE REVISION PUBLIC CONFIDENTIAL UTILIZATION SCOPE Basic Design, Detailed Design, Issue for Construction, etc.	00	15.12.21	O &M Country					3						IANA N	MARTI	INS P	EREI	RA				
PROGETTO / IMPIANTO PROJECT / PLANT GROUP FUNCION TYPE ISSUER COUNTRY TEC. PLANT SYSTEM PROGRESSIVE REVISION GRE OEM R 8 8 B R H 6 8 5 0 1 0 9 0 0 6 0 2 CLASSIFICATION PUBLIC \boxtimes CONFIDENTIAL \square Basic Design, Detailed Design, Issue for Construction, etc.	REV.	DATE	D	DESCRIPTIO)N		,	PREPA	RED		CONTR	IBUTIO	ON	VE	ERIFIE	E D		V.	ALIDA	TED		
PROJECT / PLANT PCH PRIMAVERA GRE OEM R 8 8 B R H 6 8 5 0 1 0 9 0 0 6 0 2 CLASSIFICATION CLASSIFICATION CLASSIFICATION CLASSIFICATION CLASSIFICATION COUNTRY TEC. PLANT FUNCION TYPE ISSUER COUNTRY TEC. PLANT SYSTEM PROGRESSIVE REVISION FUNCION TYPE ISSUER COUNTRY TEC. PLANT SYSTEM PROGRESSIVE REVISION REVISION REVISION REVISION REVISION FUNCION TYPE ISSUER COUNTRY TEC. PLANT SYSTEM PROGRESSIVE REVISION REVISION REVISION FUNCION TYPE ISSUER FUN	PROCET	TO / IMPIANTO								E	GP (COD.	E									
CLASSIFICATION CRE OEM R 8 8 8 B R H 6 8 5 0 1 0 9 0 0 6 0 2	PROJECT / PLANT		GROUP	FUNCION	ТҮРЕ	ISS	SUER	cou	INTRY	TEC			PLANT			SYS	ГЕМ	PRO	OGRESSI	VE	REVIS	SION
CLASSIFICATION Basic Design, Detailed Design, Issue for Construction, etc.			GRE	OEM	R	8	8	В	R	Н	6	8	5	0	1	0	9	0	0	6	0	2
Basic Design, Detailed Design, Issue for Construction, etc.	CIASSIFICATION		1	PUBLIC CONFIDENTIAL			AL] UTILIZATION SCOPE														
	CLAD	JI TORITON	C	OMPANY			REST	RICTEI	D 🗆		В	asic D	esign,	Detai	led De	esign,Is	sue for	Const	ructio	n, etc.		

CODE GRE.OEM.R.88.BR.H.68501.09.014.02

PAGE 2 of 23

Controle de Distribuição do Plano de Ação de Emergência

Somente para Uso Oficial

Cópia	Entidade	Recebimento	Identificação	Assinatura

Controle de Revisão e Atualização dos Contatos dos Agentes Internos e Externos

Revisão	Data Preparado		Revisão / Atualização / Descrição			
00	15/12/2021	Juliana Martins Pereira	Emissão Inicial			
01	15.12.2022	Bruna Gomides Gouveia	Atualização de Equipe, contatos e Mapas de Mancha de Inundação.			
02	02 22.12.2023 Bruna Gomides Gouveia		Atualização de Equipe, Relatório de Cadastramento ZAS,Relatório de Plano de Evacuação			

CODE GRE.OEM.R.88.BR.H.68501.09.014.02

PAGE 3 of 23

ÍNDICE

1.	INTRODUÇÃO	.4
2.	RESPONSÁVEIS PELO DOCUMENTO	.4
2.1.	REFERÊNCIA	
3.	IDENTIFICAÇÃO DO REPRESENTANTE LEGAL DO EMPREENDEDOR	.5
4.	IDENTIFICAÇÃO DO RESPONSÁVEL TÉCNICO DO PSB E PAE	
4.1.	COORDENADOR RESPONSÁVEL PELO PAE	.5
5.	RESPONSABILIDADES GERAIS DO PAE	.5
5.1.	EMPREENDEDOR	.5
5.2.	COORDENADOR RESPONSÁVEL PELO PAE	.5
5.3.	COORDENAÇÃO TÉCNICA CIVIL - ENGENHEIRO RESPONSÁVEL PELO PLANO DE SEGURANÇA DA BARRAGEM	.6
	RESPONSÁVEL LOCAL NA BARRAGEM	
5.5.	ORGANIZAÇÃO DA EQUIPE TÉCNICA	.6
6.	CARACTERIZAÇÃO DOS NÍVEIS DE SEGURANA	.9
7.	AÇÕES ESPERADAS PARA CADA NÍVEL DE RESPOSTA	
8.	FLUXOGRAMA DE NOTIFICAÇÕES E COMUNICAÇÃO	11
8.1.	SISTEMA DE PROTEÇÃO, DEFESAS CIVIS E AGENTES INTERNOS E EXTERNOS	
9.	SIMULAÇÃO HIDRODINÂMICA DE RUPTURA DA BARRAGEM	14
9.1.	PARÂMETROS E CRITÉRIOS ADOTADOS	14
9.2.	RESULTADOS DOS MODELOS DE RUPTURA	15
9.3.	VERIFICAÇÃO DAS VAZÕES MÁXIMAS POR MÉTODOS EMPÍRICOS	16
9.4.	RESULTADOS DAS SIMULAÇÕES	18
9.5.	CONCLUSÕES E RECOMENDAÇÕES	20
10.	TREINAMENTOS - PAE	21
11.	ASSINATURA DOS RESPONSÁVEIS	22
12.	ANEXOS	23
ANE	XO 1: MAPAS ZONA DE AUTOSSALVAMENTO	23
ANE	XO 2: PLANO DE EVACUAÇÃO	23

CODE GRE.OEM.R.88.BR.H.68501.09.014.02

PAGE 4 of 23

1. INTRODUÇÃO

O Plano de Ação de Emergência (PAE) é parte integrante do Plano de Segurança da Barragem (PSB) da UHE Salto Apiacás tem por finalidade atender a Resolução Normativa da ANEEL nº 1064 de 2 de maio de 2023, que estabelece as ações a serem executadas pelo empreendedor.

Conforme apresentado no **PSB**, a UHE Salto Apiacás foi **classificada como "C"**, avaliada na Categoria de Risco Baixa e Dano Potencial Associado Médio. O **PSB** é um documento formal em que estão estabelecidas as ações a serem executadas visando a manutenção da integridade física a barragem, bem como em caso de situação de emergência.

O PAE constitui peça obrigatória para barragens classificadas como A ou B segundo a matriz de classificação da barragem, ou conforme sua categoria de risco e dano potencial associado como médio ou alto.

Em conformidade com o Art. 11° da Lei 14.066, para a barragem UHE Salto Apiacás classificada como de Dano Potencial Associado Médio, apresentado no item 2 deste relatório.

O presente documento apresenta o **PAE de Ruptura de Barragem**, conforme determina o §3º do Artº13 da RN1064/2023 ANEEL, e considera o conteúdo mínimo previsto no Artº12 da Lei nº 12.334, de 20 de setembro de 2010, conduzida pelo responsável técnico do **PSB**.

De acordo com RN1064/2023, o **PAE** deve estar disponível no site do empreendedor, no empreendimento e nas prefeituras envolvidas, bem como ser encaminhado aos organismos de defesa civil.

O PAE pode ser encontrado no site: https://www.enel.com.br/pt/quemsomos/archive/d2018-comportamento-etico/plano-de-acao-de-emergencia.html#

2. RESPONSÁVEIS PELO DOCUMENTO

Responsável pela elaboração do documento:

Engenheira Bruna Gomides Gouveia

Responsável pela aprovação do documento:

• Engenheira Juliana Martins Pereira

CODE GRE.OEM.R.88.BR.H.68501.09.014.02

PAGE 5 of 23

2.1. REFERÊNCIA

Ref. [1]: H355812-00000-200-230-0005_0B_V3- UHE SALTO APIACÁS

3. IDENTIFICAÇÃO DO REPRESENTANTE LEGAL DO EMPREENDEDOR

Diretor Jayme Barg

4. IDENTIFICAÇÃO DO RESPONSÁVEL TÉCNICO DO PSB E PAE

• Engenheira Juliana Martins Pereira

4.1. COORDENADOR RESPONSÁVEL PELO PAE

Celso Ivan Duarte Braga

5. RESPONSABILIDADES GERAIS DO PAE

5.1. EMPREENDEDOR

A gestão do **PAE** é atribuição da **ENEL** que, em conjunto com o **Engenheiro Responsável pela Barragem**, manterá a gestão operativa utilizando a estrutura presente na Empresa, incluindo os recursos de telecomunicação para transferência de dados e informações e, se necessário, para conectar-se a terceiros.

É atribuição do **Empreendedor**:

- Providenciar a elaboração e atualização do PAE;
- 2. Promover treinamentos internos e manter os respectivos registros das atividades;
- 3. Participar de simulações de situações de emergência, em conjunto com os agentes externos.

Abaixo se encontram elencados os profissionais envolvidos, atribuições e responsabilidades para gerir os procedimentos em situação de emergência.

5.2. COORDENADOR RESPONSÁVEL PELO PAE

O coordenador do PAE é responsável, por delegação do Empreendedor pelas seguintes ações;

• Detectar, avaliar e classificar as situações de emergência em potencial;

CODE GRE.OEM.R.88.BR.H.68501.09.014.02

PAGE 6 of 23

- Declarar situação de emergência e executar as ações descritas no PAE entre outra necessárias durante a emergência;
- Executar as ações previstas no fluxograma de notificação;
- Iniciar o processo de notificação para a zona de Autosalvamento (ZAS)
- Notificar os agentes externos e autoridades públicas em caso de situação de emergência;
- Emitir declaração de encerramento de emergência;
- Elaborar o relatório de fechamento de eventos de emergência.

O coordenador do PAE receberá treinamentos através da coordenação técnica civil.

5.3. COORDENAÇÃO TÉCNICA CIVIL - ENGENHEIRO RESPONSÁVEL PELO PLANO DE SEGURANÇA DA BARRAGEM

Profissional competente para dar o suporte técnico relativo ao comportamento e segurança da barragem e das estruturas hidráulicas. Responsável pela emissão de atestados de responsabilidade técnica junto ao **Conselho Regional de Engenharia e Agronomia – CREA** para os assuntos que se referem à segurança da barragem.

5.4. RESPONSÁVEL LOCAL NA BARRAGEM

Encarregado geral da barragem, indicado para execução das manobras e inspeções rotineiras de campo.

5.5. ORGANIZAÇÃO DA EQUIPE TÉCNICA

Será apresentada nesse item a organização da equipe técnica capacitada a realizar atividades relacionadas à segurança de barragens em situação de Emergência

CODE GRE.OEM.R.88.BR.H.68501.09.014.02 PAGE

7 of 23

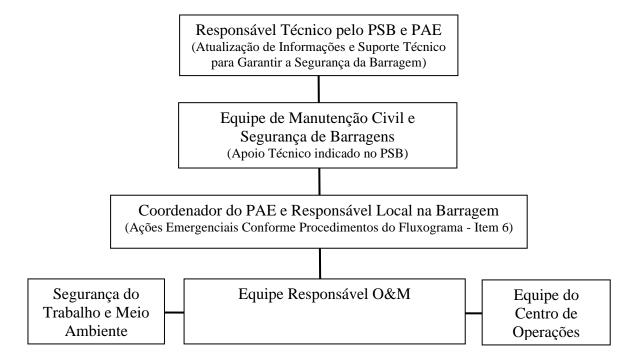


Figura 1 - Organização da Equipe Técnica

A tabela a seguir apresenta o número de profissionais e disponibilidade em operação normal e emergencial da barragem da PCH Salto Apiacás, conforme diretriz organizacional nº 1271 de 21 de novembro de 2023 e diretriz organizacional nº 2146 de 13 de dezembro de 2023. A equipe disponível indicada no item 6 do PSB, com qualificação técnica de segurança de barragens

CODE GRE.OEM.R.88.BR.H.68501.09.014.02

PAGE 8 of 23

		Responsável Técni	co pelo PSB e PAE		
Nº de pessoas	Função	Disponibilidade em operação normal	Disponibilidade em emergência	Locação	
1 Gerente		Total	Total	Rio de Janeiro-RJ	
	Equipo	e de Manutenção Civi	l e Segurança de Barragem	1	
Nº de bessoas	Função	Disponibilidade em operação normal	Disponibilidade em emergência	Locação	
6	Especialistas	Total	Total	Rio de Janeiro-RJ	
10	Especialistas	Parcial	Total	Rio de Janeiro-RJ	
	Coorde	enador do PAE e Resp	onsável Local na Barrager	m	
Nº de oessoas	Titulação	Disponibilidade em operação normal		Locação	
1	Encarregado	Total	Total	Alta Floresta -MT	
		Equipe Respo	onsável O&M		
Nº de		Disponibilidade em			
pessoas	Titulação	operação normal	emergência	Locação	
1	Coordenador	Total	Total	Cuiabá-MT	
1	Encarregado	Total	Total	Alta Floresta -MT	
2	Mantenedor	Total	Total	Alta Floresta -MT	
1	Técnico	Total	Total	Cuiabá-MT	
	Eaui	pe de Segurança do 1	rabalho e Meio Ambiente		
Nº de pessoas	Titulação	Disponibilidade em operação normal		Locação	
1	Diretor de QSMS	Total	Total	Rio de Janeiro-RJ	
2	Coordenadoras de QSMS	Parcial	Total	Rio de Janeiro-RJ	
1	Especialista de Meio Ambiente	Total	Total	Cuiabá-MT	
1	Técnico de Segurança do Trabalho	Total	Total	Cuiabá-MT	
		Equipe do Centr	o de Operações		
Nº de pessoas	Titulação	Disponibilidade em operação normal	Disponibilidade em emergência	Locação	
1	Gerente	Total	Total	Rio de Janeiro-RJ	
1	Supervisor	Total	Total	Rio de Janeiro-RJ	
2	Técnicos	Total	Total	Rio de Janeiro-RJ	
		Comunicaç	ão e Mídia		
Nº de	Titulação	Disponibilidade em	Disponibilidade em	Locação	
essoas 1	Diretora de Comunicação com a Mídia	operação normal Total	emergência Total	Rio de Janeiro-RJ	
1	Responsável Relações com a Mídia	Total	Total	Rio de Janeiro-RJ	
1	Responsável de Relações Institucionais	Total	Total	Rio de Janeiro-RJ	
1	Diretora de Regulação	Total	Total	Rio de Janeiro-RJ	
1	Responsável de Relações Institucionais	Total	Total	Rio de Janeiro-RJ	

CODE GRE.OEM.R.88.BR.H.68501.09.014.02
PAGE

9 of 23

6. CARACTERIZAÇÃO DOS NÍVEIS DE SEGURANA

As ações demandadas frente à identificação de uma anomalia na barragem da UHE Salto Apiacas serão efetuadas em função do NÍVEL DE RESPOSTA frente à situação observada.

Os níveis de resposta NORMAL (NR-0) e ATENÇÃO (NR-1) se referem às situações anômalas que não comprometem, imediatamente, a segurança da barragem, mas que demandam ações ditas preventivas de modo a evitar a evolução. Os níveis de ALERTA (NR-2) e EMERGÊNCIA (NR-3), por se referirem às situações de risco à segurança no curto prazo ou de ruptura iminente, ativam um processo de emergência na estrutura, exigindo o cumprimento do estabelecido neste PAE.

Os critérios para o enquadramento do NÍVEL DE RESPOSTA encontram-se indicados na Tabela 2.

Tabela 2 – Critérios para enquadramento do Nível de Resposta (NR) (Parte 1/2)

Taocia 2 – Criterios para enquadramento do Tiver de Resposta (Tirk) (Tarte 1/2)						
SITUAÇÃO	NORMAL (NR-0)	Quando as anomalias encontradas não comprometem a segurança da barragem, mas devem ser monitoradas e controladas ao longo do tempo. Configura ESTADO NORMAL . Segurança da estrutura não é afetada.				
ADVERSA	ATENÇÃO (NR-1)	Quando as anomalias encontradas não comprometem a segurança da barragem no curto prazo, mas devem ser controladas, monitoradas ou reparadas. Configura ESTADO DE ATENÇÃO. Segurança da estrutura pode ser afetada em médio prazo.				

CODE GRE.OEM.R.88.BR.H.68501.09.014.02

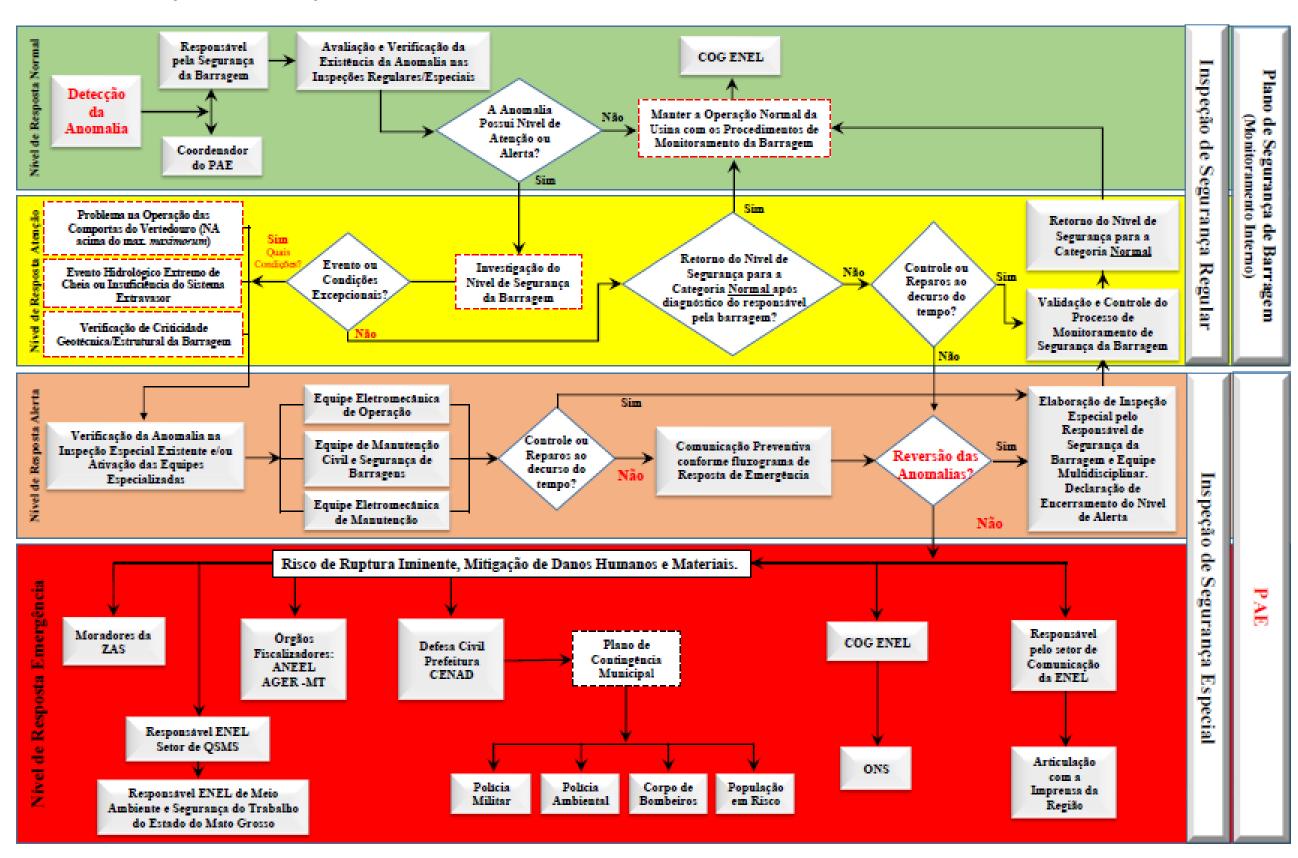
PAGE 10 of 23

Tabela 2 – Critérios para enquadramento do Nível de Resposta (NR) (Parte 2/2)

Tacola 2 Officials para	ALERTA (NR-2)	Quando as anomalias encontradas representam risco à segurança da barragem no curto prazo, devendo ser tomadas providências para a eliminação do problema. Configura ESTADO DE ALERTA. Segurança da estrutura pode ser afetada em curto prazo, sendo a situação ainda passível de mitigação. Considera-se que não há certeza de que se consiga controlar a situação, requerendo total prioridade das ações mitigadoras. Requer a realização de atividade(s) de Inspeção de
SITUAÇÃO DE EMERGÊNCIA	EMERGÊNCIA (NR-3)	Quando as anomalias encontradas representem risco de ruptura iminente ou em que a ruptura está ocorrendo, devendo ser tomadas medidas para prevenção e redução dos danos materiais e humanos decorrentes do colapso da barragem. Configura ESTADO DE EMERGÊNCIA. O alerta para a evacuação da Zona de Autossalvamento é obrigatório, assim como o acionamento de todos os agentes externos listados neste PAE. A Situação de Emergência encontra-se fora do controle e está afetando a segurança estrutural da barragem de maneira severa e irreversível. Um acidente é inevitável ou a estrutura já se encontra em colapso.

7. AÇÕES ESPERADAS PARA CADA NÍVEL DE RESPOSTA

As ações esperadas para cada situação envolvem a adoção de ações de controle/resposta e de notificação próprias para cada Nível de Resposta, conforme indicado a seguir no fluxograma de comunicação



CODE GRE.OEM.R.88.BR.H.00120.09.004.01 PAGE

11 of 23

8. FLUXOGRAMA DE NOTIFICAÇÕES E COMUNICAÇÃO

CODE GRE.OEM.R.88.BR.H.00120.09.004.02

PAGE 12 of 23

8.1. SISTEMA DE PROTEÇÃO, DEFESAS CIVIS E AGENTES INTERNOS E EXTERNOS

CARGO	CONTATO	ENDEREÇO ELETRÔNICO	TELEFONE
Responsável Legal Diretor	Jayme Barg		
Engenheiro Responsável pelo Plano de Segurança de Barragem e Gerente Segurança de Barragem e Infraestrutura Civil	Juliana Martins Pereira		
Responsável pelas ações do PAE	Celso Ivan Duarte Braga		
Coordenação de O&M	Ademar Borges da Silva		
Mantenedor	Marcos Pereira		
Mantenedor	Joel Silva		
Mantenedor	Nelson Correa		
Diretor de Segurança do Trabalho e Meio Ambiente QSMS	Karla Maria de Carvalho		
Coordenadora de Segurança do Trabalho	Alessandra Conceição		
Coordenadora de Meio Ambiente	Soraya Cavalieri		
Responsável pela Segurança do Trabalho em Mato Grosso	Valdivino Rosa		
Responsável de Meio Ambiente em Mato Grosso	James Colodel		
Gerente do Centro de Operações - COG	Ronaldo Ribeiro Filho		
Tempo Real - COG	Tempo Real		
Diretora de Comunicação	Janaina Vilella		
Responsável Relações com a Mídia	Maria Fernanda de Freitas		
Responsável de Relações Institucionais	Alexandra Valença		
Diretora de Regulação	Anna Paula Pacheco		
Responsável de Regulação	Diego Bittner		

ENTIDADE	ENDEREÇO ELETRÔNICO	TELEFONE	ENDEREÇO

CODE GRE.OEM.R.88.BR.H.00120.09.004.02

PAGE 13 of 23

Prefeitura Municipal de Alta Floresta	gabineteprefeito@altafloresta.mt.gov.br	(66)3512-3100 \ (66) 3512-3150	Travessa Álvaro Teixeira Costa, 50, Canteiro Central
Prefeitura Municipal de Juara	dabinete@iliara.mt.dov.br		Rua Niterói 81-N, Juara, MT CEP 78575-000
Defesa Civil	defesacivil@defesacivil.mt.gov.br	(65) 3613-8406	Rua: General Neves, 69, Duque de Caxias; 78043-256 Cuiabá - Mato Grosso
Companhia de Bombeiros Militar	7cibm@cbm.mt.gov.br	(66) 3521-2467 / 4766	Avenida Perimetral Rogério Silva, nº 3251, Setor B - Alta Floresta/MT
Polícia Militar de Alta Floresta	8bpm@pm.mt.gov.br	(66) 3521-1716	Rodovia MT 208, KM 145, Trevo São Cristóvão, CEP 78.580-000
ANEEL – Agência Nacional de Energia Elétrica	ouvidoriainstitucional@aneel.gov.br	(66) 2192-8600	Setor de grandes áreas norte, 603, Asa Norte. Brasília DF – CEP: 70830030

ENTIDADE	CARGO	CONTATO	ENDEREÇO ELETRÔNICO	TELEFONE
Centro Municipal De Saúde	Secretário	José Aparecido de Souza	=	(66)3903-1250
Prefeitura Municipal De Alta Floresta	Prefeito	Valdemar Gamba	gabineteprefeito@altafloresta. mt.gov.br	(66) 3512-3150
IBAMA	Superintenden te	Gibson Almeida Costa Júnior	supes.mt@ibama.gov.br gabinete.mt@ibama.gov.br	(65) 3363-4663 (65) 3363-4640 (65) 3363-4641 (65) 3363-4643

CODE GRE.OEM.R.88.BR.H.00120.09.004.02

PAGE 14 of 23

9. SIMULAÇÃO HIDRODINÂMICA DE RUPTURA DA BARRAGEM

A seguir, serão apresentados os principais aspectos dos estudos de ruptura de barragem da UHE Salto de Apiacás, de acordo com a Ref. [01]. Estudo já contempla situação em cascata.

Foram analisados os cenários de ruptura mais desfavoráveis, considerando o comprometimento da segurança das populações de jusante ou suas infraestruturas. As simulações em condições hidrológicas "normais". O cenário de ruptura simulado para a UHE Salto Apiacás é caracterizado a seguir:

 Cenário 2b – Ruptura da Barragem da UHE Salto Apiacás em Condições Normais - vazão afluente é a Média de Longo Termo (MLT = 185 m³/s)

Condição Tempo de N.A. Cenários Reservatórios Tipo de Ruptura Hidrológica Ruptura (m^3/s) (min) (m) Ruptura de 10 blocos de 2h 185 (Vazão MLT) 12 N.A. Máx. Normal concreto na UHE Salto Apiacás

Tabela 2 - Características dos Cenários Definidos

9.1. PARÂMETROS E CRITÉRIOS ADOTADOS

Para realização dos estudos de ruptura é necessário definir uma série de parâmetros relacionados às características físicas das obras estudadas, além das condições dos mecanismos de falha que possam vir a se desenvolver em cada estrutura.

Os parâmetros de ruptura devem representar a modelagem dos mecanismos de falhas considerados, incluindo características geométricas da brecha que se forma e o tempo que levará para se desenvolver. Para estimativa desses parâmetros, optou-se por utilizar as recomendações dadas pelos manuais de projeto da ANA e do GTPEP, já referenciados, que consideram a forma, a largura, o talude e o tempo de formação da brecha. O Guia da ANA apresenta parâmetros baseados em estudo consolidados pela USBR, 1989.

A largura W do coroamento da barragem de concreto é de 483,48 m, sendo previstas juntas de dilatação a cada 15 m, que caracterizam a largura dos blocos monolíticos (LB). Para o critério da FERC, se considerou inicialmente uma ruptura simultânea de um máximo de 3 blocos, visto que supõe que somente os blocos que suportam a maior carga devem colapsar diante de uma eventual falha.

Assim, a partir dos dois critérios de projeto adotados, foi possível calcular a largura média da brecha (BR) como:

- GTPEP: BR = Máximo [W/3; 3 x LB] = Máximo [483/3 = 161 m; 3 x 15 = 45 m] = 161 m
- ANA: BR = múltiplo de vários blocos, sendo usualmente BR < 0,5 x W

CODE GRE.OEM.R.88.BR.H.00120.09.004.02
PAGE 15 of 23

Para atender o critério de ruptura sugerido em GTPEP, adotou-se, então, a largura de brecha equivalente à ruptura simultânea de 10 blocos, ou seja, BR = 10 x 15 = 150 m, estando este valor também de acordo com a faixa recomendada pela ANA.

O talude da brecha (z) deverá ocorrer de forma vertical (z = 0), visto que a falha se produzirá nas juntas dos blocos.

Optou-se por adotar como tempo de formação da brecha (TF) o valor mediano de aproximadamente 12 minutos, estando coerente com ambos os critérios de projeto.

A Tabela 3 apresenta um resumo com os critérios de projeto considerados, os valores de referência resultantes de cada um e, finalmente, os valores adotados para as simulações aqui realizadas.

Tabela 3 - Parâmetros de Ruptura da UHE Salto Apiacás Critérios Recomendados e Valores Adotados

Critério	Largura média da brecha (BR)	Talude da Brecha (z)	Tempo de Formação da Brecha (TF)
FERC	Largura de 1 ou mais blocos ou BR < 0.5 W	z = 0	6 < TF < 18 minutos
GTPEP	Max (W/3, 3 blocos)	z = 0	10 < TF < 15 minutos
ANEEL/USBR	Um múltiplo de vários blocos, sendo usualmente BR < 0.5 W	z = 0	6 < TF < 18 minutos
Adotado	BR = 10 x 15 = 150 m	z = 0	TF = 12 minutos

9.2. RESULTADOS DOS MODELOS DE RUPTURA

O produto dos modelos de ruptura são hidrograma de ruptura, um para cada cenário estudado, a serem aplicados ao modelo de propagação para avaliar os efeitos a jusante.

A partir das simulações realizadas com os modelos de ruptura, adotando os parâmetros e critérios anteriormente descritos, foram obtidos os seguintes resultados, conforme apresentado a seguir.

Cenário 2b – Ruptura da Barragem da UHE Salto Apiacás em Condições Normais

A Figura 2 apresenta os hidrogramas resultantes da simulação para ruptura da barragem de blocos concreto (10 blocos rompidos) da UHE Salto Apiacás sob condições hidrológicas "normais", para o qual se obteve uma vazão máxima de pico de 3.196 m³/s que, ao passar pelo reservatório seguinte, foi atenuada para 2.914 m³/s, defluente à PCH da Fazenda. O trecho entre os aproveitamentos Salto Apiacás e da Fazenda foi simulado diretamente pela modelagem do reservatório da PCH da Fazenda, através da sua curva cota-volume inserida no modelo HEC-RAS, sem que fosse simulado o escoamento dinâmico deste trecho.

CODE GRE.OEM.R.88.BR.H.00120.09.004.02

PAGE 16 of 23

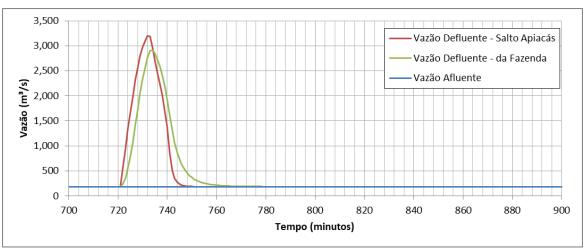


Figura 2 – Resultado dos Hidrogramas Defluentes – Cenário 2b

9.3. VERIFICAÇÃO DAS VAZÕES MÁXIMAS POR MÉTODOS EMPÍRICOS

Tendo por objetivo a verificação das vazões de pico dos hidrogramas a serem gerados pelo modelo hidráulico (HEC-RAS), procedeu-se o cálculo dessas vazões através de algumas equações empíricas. Observa-se uma grande dispersão nos resultados dessas formulações, indicando que o seu uso deve se limitar apenas à identificação de valores de referência e ordem de grandeza dos eventos.

Neste contexto, foram identificadas três metodologias, as quais são descritas matematicamente a seguir:

National Weather Service (NWS):

$$Q_P = 0.2879 \cdot BR \left[\frac{C}{\frac{TF}{3600} + \frac{0.5521 \cdot C}{\sqrt{H}}} \right]^3 , \qquad C = \frac{1.762 \cdot 10^{-3} S_a}{BR}$$

Onde.

QP : Vazão máxima de ruptura (m³/s) Sa : Área superficial do reservatório (m²)

H: Carga hidráulica (m)

BR : Comprimento da brecha (m) TF : Tempo de formação da falha (s)

CODE GRE.OEM.R.88.BR.H.00120.09.004.02

PAGE 17 of 23

Webby:

$$Q_P = 0.0443 \cdot g^{0.5} \cdot V^{0.367} \cdot h^{1.4}$$

Onde,

QP :Vazão máxima de ruptura (m³/s) g :Aceleração da gravidade (m/s²)

V: Volume de agua no reservatório (m³)

h : Carga hidráulica (m)

Froehlich:

$$Q_P = 0.607 \cdot V^{0.295} \cdot h^{1.24}$$

Onde,

QP : Vazão máxima de ruptura (m³/s) V : Volume de água no reservatório (m³)

h : Carga hidráulica (m)

O Quadro 4 resume os critérios e parâmetros utilizados em cada uma das formulações para estimativa da vazão máxima (de pico) do hidrograma resultante da ruptura da barragem da UHE Salto Apiacás.

Tabela 4 - Critérios e Parâmetros Utilizados no Cálculo da Vazão Máxima (de Pico) para cada Formulação e Cenário de Ruptura (NWS, Webby e Froehlich)

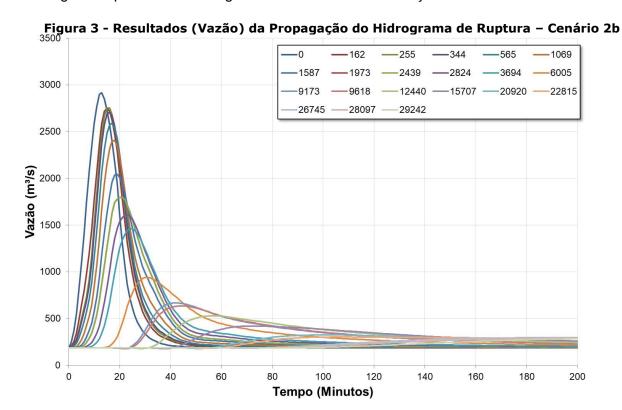
Variáveis	Cenário 2b
Sa: Área superficial do reservatório (m²)	749.000
V : Volume de agua no reservatório (m³)	2.078.000
NA do reservatório (m)	247,50
Cota do fundo da brecha (m)	240,00
H : Carga hidráulica (m)	7,5
BR : Comprimento da brecha (m)	150
TF: Tempo de formação da falha (s)	720
g : Aceleração da gravidade (m/s²)	9,81

A Tabela 5 apresenta os resultados de vazão máxima (de pico) dos hidrogramas encontrados com a aplicação de cada uma dessas formulações de ruptura, incluindo ainda os valores resultados da modelagem com o modelo matemático.

Observa-se que os valores calculados a partir da aplicação do modelo HEC-RAS são coerentes com os valores encontrados a partir da formulação proposta pelo NWS, divergindo significativamente para as outras duas formulações teóricas também aplicadas para cálculo da vazão máxima (de pico) originada a partir da falha das estruturas hidráulicas da barragem.

Tabela 5 - Resultados da Vazão Máxima (de Pico) de Ruptura (m³/s) Calculados a partir da Aplicação de Diferentes Metodologias Comparados aos Valores do Modelo Matemático HEC-RAS

Metodologia Aplicada	Cenário 2b
NWS	3.825
Webby	485
Froehlich	498
HEC-RAS	3.196


CODE GRE.OEM.R.88.BR.H.00120.09.004.02

PAGE 18 of 23

9.4. RESULTADOS DAS SIMULAÇÕES

Cenário 2b – Ruptura da Barragem da UHE Salto Apiacás em Condições Normais

A Figura 3 apresenta os hidrogramas resultantes da simulação do Cenário 2b, onde ocorre a ruptura da barragem da UHE Salto Apiacás sob condições hidrológicas "normais". Observa-se que ocorre um abatimento considerável do pico do hidrograma ao longo da calha do rio Apiacás. Na legenda, os valores se referem às distâncias entre as seções transversais e o eixo do barramento da UHE Salto Apiacás. A Figura 4 apresenta os limnigramas resultantes da simulação do Cenário 2b.

CODE GRE.OEM.R.88.BR.H.00120.09.004.02

PAGE 19 of 23

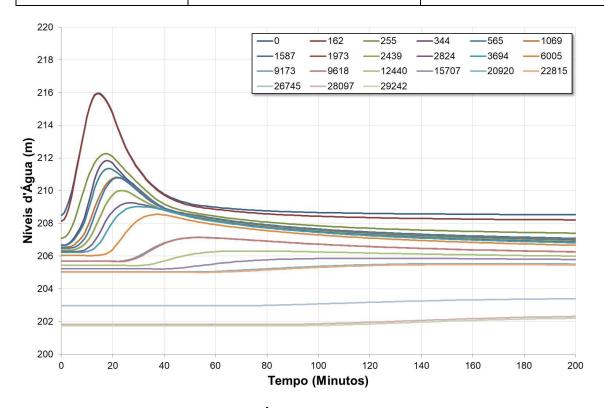


Figura 3 - Resultados (Nível d'Água) da Propagação do Hidrograma de Ruptura - Cenário 2b A Figura 8 apresenta os Tempos de Chegada da Onda Positiva e o Tempo de Chegada do Nível Máximo nas diferentes seções transversais, plotados contra as respectivas distâncias. Neste cenário, o pico de nível d'água da onda de cheia levará aprox. 225 minutos para percorrer todo o trecho modelado.

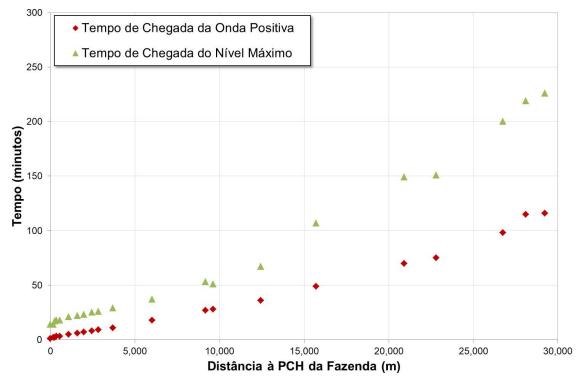


Figura 4 - Resultados do Tempo de Chegada da Onda Positiva e do Pico - Cenário 2b

CODE GRE.OEM.R.88.BR.H.00120.09.004.02

PAGE 20 of 23

Sendo a Zona de Auto Salvamento (ZAS) definida como a distância associada ao tempo de chegada da onda de inundação igual 30 minutos, neste cenário a ZAS estaria delimitada até a distância 12,4 km a jusante do eixo da PCH da Fazenda, barragem mais a jusante do Complexo Hidrelétrico Apiacás.

Imediatamente a jusante da UHE Salto Apiacás (início do reservatório da PCH da Fazenda), o nível máximo simulado foi de 223,41 m, sendo atingido 12 minutos após o início da ruptura. O NA Max. Maximorum (definido para TR = 1.000 anos) de jusante da UHE Salto Apiacás é de 222,55 m, coincidente com o NA Max. Maximorum de montante da PCH da Fazenda. O piso da Casa de Força está posicionado na El. 225,60 m, acima do nível máximo simulado. Da mesma forma, a cota de coroamento das estruturas da PCH da Fazenda é 224,00 m, acima, portanto do nível máximo simulado.

Para jusante da PCH da Fazenda (casa de força), o nível máximo simulado foi de 215,97 m, sendo atingido 14 minutos após o início da ruptura. O NA Max. Maximorum (definido para TR = 1.000 anos) de jusante da PCH da Fazenda é de 216,32 m. Portanto, o nível máximo simulado a jusante da casa de força do aproveitamento, neste cenário, não provoca consequências desconhecidas.

9.5. CONCLUSÕES E RECOMENDAÇÕES

Foram simulados cenários de ruptura da segunda barragem do Complexo Hidrelétrico Apiacás – UHE Salto Apiacás –, tendo sido verificado o efeito de amortecimento da onda cheia no reservatório seguinte.

Não se dispõe, no momento, de um modelo digital de terreno a jusante das barragens que permita a delimitação segura de manchas de inundação decorrente desses eventos simulados. Dessa forma, o resultado das simulações foi condensado em tabelas informando, para cada cenário simulado, os níveis d'água máximos alcançados pela onda de cheia propagada em cada seção existente, o que permitirá a confecção futura das manchas de inundação associadas.

Da mesma forma, estas tabelas apresentam também os máximos valores de vazão e velocidade média nessas seções, para cada cenário, e os tempos decorridos desde o início das rupturas até a chegada da onda propagada e até a chegada do pico propagado, para todas as seções existentes a jusante do complexo.

É recomendável que as simulações de propagação de ondas artificiais sejam reavaliadas depois da obtenção do modelo digital de terreno, pois o melhor conhecimento das características da planície de inundação poderá proporcionar resultados mais confiáveis para a delimitação de manchas.

Com o modelo digital de terreno a jusante será possível também empregar uma modelagem bidimensional para a propagação das cheias artificiais. Os resultados desse modelo podem fornecer avaliações de risco especializadas, com a determinação de profundidades e velocidades em qualquer

CODE GRE.OEM.R.88.BR.H.00120.09.004.02
DACE

PAGE 21 of 23

ponto da área inundada, e não apenas valores médios por seção transversal.

10. TREINAMENTOS - PAE

Todos os participantes do Plano de Ação Emergencial deverão ser alvo de treinamento para conscientização e familiarização com as atividades que deverão exercer. O treinamento deverá dar ênfase à mobilização dos recursos internos envolvidos.

Anualmente os integrantes deverão participar dos cursos de reciclagem das atividades, que terão como finalidade a preparação para a prontidão efetiva, e que serão ministrados após a atualização geral dos cadastros e antes do início da estação chuvosa.

Os treinamento seguirão conforme resolução 1064/2023 :

- § 8º O exercício prático de simulação de situação de emergência deve ser realizado com a população da ZAS com frequência e organização definida conjuntamente com os órgãos de proteção e defesa civil, no que couber.
- § 9º A frequência para realização do exercício prático de simulação de que trata o §8º não deverá exceder 3 anos, salvo manifestação dos órgãos de proteção e defesa civil competentes.

11. FICHA TÉCNICA DA BARRAGEM

Localização		
Curso de água	Rio Apiacás	
Município	Alta Floresta Juara	
Unidade de Federação	MT	
Coordenadas Norte e Leste	10° 20′19"S / 56° 58′58"W	
Existência de barragens a montante e a jusante	Montante - PCH Cabeça de Boi / Jusante - PCH da Fazenda	
Barragem da margem a direita	•	
Tipo	Concreto compacto a rolo	
Altura máxima acima da fundação (m)	16,5 m	
Cota do coroamento	250,50	
Comprimento do coroamento	485,76 m	
Largura do coroamento (m)	6,00	
Inclinação do paramento de montante (V:H)	Vertical	
Inclinação do paramento de jusante (V:H)	1:0,70	
Bacia hidrográfica		
Área drenada (km2)	7.237	
Precipitação média anual da bacia (mm)	2.246	
Vazão máxima registrada (m3/s)	1.373	
Reservatório	•	
Nível Mínimo Operacional (MNO)	247,50	
Nível Máximo Normal (NMN)	247,50	
Nível Máximo Maximorum (TR = 1000 anos)	249,40	
Nível Máximo Excepcional (TR = 10000 anos)	249,60	
Volume do reservatório (106 m3)	2,08	
Área inundada do NMN (km²)	0,75	
Extravasor de cheias		
Localização	Margem Esquerda	
Tipo	Soleira livre	
Vazão do projeto (TR = 1000 anos) (m3)	1.860,00	
Cota da soleira	247,50	
Largura útil do extravasor (m)	338,00	
Tipo de dissipador de energia	Degraus	
Descarregador de fundo (Descarga de fundo)	
Localização	Central	
Tipo	Gravidade	
Vazão máxima sob NMN (m3/s)	182,65	
Cota da soleira à entrada	235,00	
Cota da soleira à saída	235.00	

Comprimento da galeria (m)	16,35
Tipo de comportas	Vagão
Número de comportas e dimensão (H:V)	Uma; H = 4,20; V = 5,00
Tipo de manobra	Servomotor
Fonte alternativa de energia	Gerador de emergência
Tomada d'água	·
Localização	Margem Direita
Tipo	Gravidade
Cotas das tomadas d'água à entrada	237,50
Vazão máxima (m3/s)	204,00
Tipos de comportas	Ensecadeira/Vagão
Número de comportas e dimensão (H:V)	Duas; H = 4,70; V= 5,50
Comprimento da galeria (m)	17,35
Número e dimensões das grades (H:V)	Três; H = 8,00;
Tipo de manobra	Servomotor
Fonte alternativa de energia	Gerador de Emergência

CODE GRE.OEM.R.88.BR.H.00120.09.004.02 PAGE

22 of 23

12. ASSINATURA DOS RESPONSÁVEIS

Jayme Barg

Responsável Legal CREA: 1989105709 **Eng. Juliana Martins Pereira**

Responsável Técnico CREA: 2605272010

CODE GRE.OEM.R.88.BR.H.00120.09.004.02
PAGE 23 of 23

13. ANEXOS

ANEXO 1: MAPAS ZONA DE AUTOSSALVAMENTO

Item	N⁰ Enel Green Power	Título
1	GRE.OEM.R.88.BR.H.01PAP.08.007.00	Relatório de Cadastramento ZAS
2	GRE.OEM.D.88.BR.H.01PAP.08.011	MAPA ÍNDICE DAS PLANTAS DE ROTA DE FUGA, PONTOS DE ENCONTRO E PROJETO DE SINALIZAÇÃO

ANEXO 2: PLANO DE EVACUAÇÃO

Item	N⁰ Enel Green Power	Título
1	GRE.OEM.R.88.BR.H.01PAP.08.009.00	Plano de Evacuação